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Owing to a few unique advantages, the double-dot single electron transistor has been proposed as an
alternative detector for charge states. In this work, we present a further study for its signal-to-noise property,
based on a full analysis of the setup configuration symmetry. It is found that the effectiveness of the double-dot
detector can approach that of an ideal detector, if the symmetric capacitive coupling is taken into account. The
quantum measurement efficiency is also analyzed by comparing the measurement time with the measurement-
induced dephasing time.
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INTRODUCTION

Quantum measurement in solid-state mesoscopic systems
has attracted considerable interest in the past years.1–7 Be-
sides the intensive theoretical work, experimental progresses
are, in particular, impressive.8–15 In these studies, two mea-
surement devices were typically focused on, i.e., the mesos-
copic quantum point contact �QPC� and the single electron
transistor �SET�. Usually, the SET is restricted to the device
with a single dot embedded in between the source and drain
electrodes. Very recently, the double-dot �DD� SET has been
proposed as an alternative charge detector.16–21 Compared to
the single-dot detector, in addition to the obvious advantage
of weakening the requirement of very low temperature, the
DD detector may have other advantages such as the follow-
ing: �i� It can probe the rapid transitions between electrostati-
cally degenerate charge states.17 Experimentally, its radio-
frequency operation has been demonstrated.18 �ii� DD
detector is able to probe the entanglement of two qubits.19

�iii� Most importantly, DD detector has better immunity
against noises.20

Owing to the added complexity of the DD detector, better
understanding of its measurement dynamics is of interest and
seems a timely work at this stage. Very recently, this problem
was studied by Gilad and Gurvitz.21 The key insight gained
in their work is the symmetry property of the setup configu-
ration, which is revealed in terms of the response current of
the DD detector in both the time and frequency domains.
However, their analysis was based on an extremely asymmet-
ric capacitive coupling configuration, which leads to a con-
clusion that the DD detector is a sensitive detector, but can-
not reach the signal-to-noise ratio of 4, i.e., the value of an
ideal QPC detector.

In this work, we present a further study for the signal-to-
noise property of the DD detector, based on a full analysis of
the capacitive coupling symmetry. In contrast with Ref. 21,
we conclude that the DD detector can approach the signal-
to-noise ratio of an ideal QPC detector, if the symmetric
capacitive coupling setup is taken into account. Moreover,

we also analyze the quantum measurement efficiency of the
DD detector by comparing the measurement time with the
measurement-induced dephasing time. It is found that under
the setup configuration that results in the optimal signal-to-
noise ratio, the measurement efficiency cannot reach unity
�i.e., the value of ideal QPC detector�. However, in principle,
it can approach unity under proper parametric conditions.

MODEL DESCRIPTION

As schematically shown in Fig. 1, let us consider a charge
qubit measured by a mesoscopic transport device. The charge
qubit studied here is modeled by a pair of coupled quantum
dots with an extra electron in it, while the detector is the
proposed DD single electron transistor. The entire system is
described by the following Hamiltonian:

H = H0 + H�, �1a�

H0 = Hs + �
k

��k
Lck

†ck + �k
Rdk

†dk� , �1b�

FIG. 1. Schematic setup of using the double-dot single electron
transistor to perform quantum measurement of a solid-state qubit.
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Hs = �
i=a,b,c,d

Eiai
†ai + ��aa

†ab + ab
†aa� + �d�ac

†ad + ad
†ac�

+ �
i=a,b

�
j=c,d

Uijninj + Ucdncnd, �1c�

H� = �
k

��k
Lac

†ck + �k
Rad

†dk + H.c.� � ac
†fc + ad

†fd + H.c.

�1d�

In these decomposed Hamiltonians, aa
†�aa�, ab

†�ab�, ac
†�ac�,

ad
†�ad�, ck

†�ck�, and dk
†�dk� are the electron creation �annihila-

tion� operators of the qubit, detector’s two central dots, and
the reservoirs. In the following treatment, the tunneling
Hamiltonian H� of the DD detector will be taken as pertur-
bation. The free Hamiltonian in the above, H0, consists of the
detector’s reservoirs, its central two dots, the qubit, and the
Coulomb interaction between them.

In this work, we assume that the DD detector works in the
strong Coulomb-blockade regime, i.e., there will be at most
one more electron occupied in the two dots. Therefore, only
the three DD states �00�, �10�, and �01� are involved in the
transport process. Here, 0 and 1 stand for the vacant and
occupied dot states, while their ordering in “�¯�” is from the
left to the right dot states of the detector. For the qubit, it has
two logic states, i.e., the dot states �a� and �b�. For the sake of
simplicity, we assume that each dot has only one bound state.
Intuitively, the measurement principle of the device under
study is as follows: if the qubit is in state �b�, the two states
�10� and �01� of the DD detector are nearly energetically
degenerate; while the qubit is in state �a�, they will be in off
resonance, due to the relatively stronger Coulomb interaction
Uad. Accordingly, the resultant different output currents of
the DD detector can distinguish the qubit states.

n-RESOLVED MASTER EQUATION

In the reduced description, the central dots of the detector
and the qubit are the system of interest, and the two reser-
voirs of the detector are the environment. The first step is to
derive a master equation for the system of interest. More-
over, in order to relate the master equation also to the output
of the detector, one should obtain an n-resolved master equa-
tion. Here, n denotes the number of electrons in certain
specified time interval that have tunneled through the left or
right junction of the transport device. Following the previous
work about the master equation,2,5,6,21–23 we obtain

�̇�nR� = − iL��nR� −
1

2
��ac

†,Ac
�−���nR� − ��nR�Ac

�+�	 + ad
†Ad

�−���nR�

+ ��nR�Ad
�+�ad

† − �ad
†��nR+1�Ad

�+� + Ad
�−���nR−1�ad

†	 + H.c.
 .

�2�

Note that throughout this paper, we shall use the unit system
of �=e=kB=1. Shown above is, in fact, the nR-resolved mas-
ter equation, with nR the number of electrons that have tun-
neled through the right junction. Similar equation can be
carried out for the left-junction specified tunneled electrons.
The superoperators in Eq. �2� read A�

�±�=C�
�±��±L�a�.

C�
�±��±L� are the spectral functions of the two reservoirs,

which are the Fourier transform of the correlation functions,
i.e., C�

�±��±L�=�−�
+�dtC�

�±��t�e±iLt, with C�
�+��t�= �f�

†�t�f�� and
C�

�−��t�= �f��t�f�
†�.

Note that the Liouvillian L is defined by L�¯�
= �HS , . . . 	. To explicitly carry out the action of its arbitrary
function on an operator �e.g., ac or ad�, a convenient way is
doing it in the eigenstate basis of HS. In this basis, the matrix
element of the arbitrary function of L is obtained by simply
replacing L with the energy difference of the two basis
states.

READOUT CHARACTERISTICS

Note that ��n� contains rich information about the mea-
surement. From it, one can obtain the distribution function of
the tunneled electron numbers, the output current, and the
noise spectrum. Quite clearly, the distribution function reads
P�nR , t�=Tr��nR�t�	, where the trace is over the states of the
system of interest. Then, the current through the right junc-
tion is

IR�t� = �
nR

Tr�nR�̇�nR�
 =
1

2
Tr��ad

†Ad
�−� − Ad

�+�ad
†	��t� + H.c.
 ,

�3�

where ��t�=�nR
��nR��t�. ��t� satisfies the usual unconditional

master equation, which can be straightforwardly obtained in
this context by summing up Eq. �2� over nR. Similar result as
Eq. �3� can be obtained for IL�t�, the current through the left
junction.

Now, we formulate the calculation of the output power
spectrum. It is well known that the noise spectrum is a mea-
sure of the temporal correlation of the current. The temporal
fluctuating currents through the left and right junctions, even
in steady state, are not equal to each other. The circuit cur-
rent, which is typically the measured quantity in most experi-
ments, is a superposition of the left and right currents, i.e.,
I�t�=aIL�t�+bIR�t�. Here, the coefficients a and b satisfy a
+b=1 and depend on the junction capacitances of the
detector.24 Note that this capacitive geometry is not necessar-
ily in accordance with the tunnel couplings. For very asym-
metric tunnel couplings, the capacitive geometry can be quite
symmetric. In what follows, we shall see that this is, in fact,
the setup we want to suggest.

In view of the charge conservation, i.e., IL= IR+ Q̇, where
Q is the charge on the central dots, we obtain I�t�I�0�
=aIL�t�IL�0�+bIR�t�IR�0�−abQ̇�t�Q̇�0�. Accordingly, the
noise spectrum is a sum of three parts,

S��� = aSL��� + bSR��� − ab�2SQ��� , �4�

where SL/R��� is the noise spectrum of the current through
the left �right� junction, and SQ��� characterizes the charge
fluctuations on the central dots. For SL/R���, it follows the
MacDonald’s formula
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S���� = 2�
0

�

dt sin �t
d

dt
�n�

2�t�� , �5�

where �n�
2�t��=	n�

n�
2 Tr ��n���t�=	n�

n�
2 P�n� , t�. With the

help of Eq. �2�, we further obtain

d

dt
�n�

2�t�� = Tr�2J�
�−�N��t� + J�

�+�� + H.c.	 , �6�

where the particle-number matrix reads N��t�
��n�

n���n���t�, and the superoperator means

J�
�±��¯� =

1

2
�A


�−��¯�a

+ ± a


+�¯�A

�+�	 . �7�

In this last equation, 
=c if �=L, and 
=d if �=R.
Following Ref. 25, it will be very convenient to work in

the frequency domain. Inserting Eq. �6� into Eq. �5�, we ob-
tain

S���� = 2� Im†Tr„2�J�
�−�Ñ���� + �J�

�−�Ñ��− ��	†


+ �J�
�+��̃��� + �J�

�+��̃�− ��	†
…‡ , �8�

where Ñ����=�0
�dtN��t�ei�t, and �̃���=�0

�dt�stei�t. Note that
�st is the stationary state density matrix, which is time inde-
pendent. We thus have �̃���= i�st /�. For N����, it can be
easily obtained by solving a set of algebraic equations after
Fourier transforming the equation of motion of N��t�, as
have been clearly described in Ref. 25.

Concerning the charge fluctuations on the central dots, we
define the noise spectrum as

SQ��� = 
−�

�

d��N���N + NN����ei�� = 4 Re�
0

�

d�S���ei��� ,

�9�

where we have introduced S���= �N���N�. More explicitly, it
can be expressed as S���=Tr TrB�U†���NU���N�st�B	, where
U���=e−iH�, and N is the electron number operator of
the central dots of the detector. Using the cyclic property
under trace, we obtain S���=Tr�N����	 and ����
�TrB�U���N�st�BU†���	. Obviously, ���� satisfies the same
equation of the reduced density matrix ����. The only differ-
ence is the initial condition, for ���� which is ��0�=N�st.
Similar to the above, from the equation of motion of ����, its
Fourier counterpart �̃��� can be straightforwardly carried
out. Then, the charge fluctuation spectrum is obtained as
SQ���=4 Re Tr�N�̃���	.

Based on the above formalism, we now investigate the
readout characteristics of the DD detector. The first impor-
tant quantity to characterize the detector is the visibility,

which is defined by p= �I� / Ī=2�Ia− Ib� / �Ia+ Ib�. In Fig. 2,
we plot the visibility against the qubit-detector interaction
strength Uad, by taking the temperature and the dot-dot cou-
pling strength �d of the DD detector as other comparative
parameters. By comparing the results shown in Figs. 2�a� and
2�b�, it is found that for smaller �d the visibility can more
easily approach the ideal value of 2, by increasing the inter-
action strength Uad. In practice, controlling Uad is difficult.

However, engineering �d is relatively easy, which opens a
way to enhance the visibility as revealed in Fig. 2. In this
context, one should also notice another major advantage of
the DD detector, say, its better tolerance to finite tempera-
tures. From Fig. 2, we see that the finite temperature does not
sensitively affect the operation of the DD detector under
proper parametric conditions, particularly for small �d as
shown in Fig. 2�a�. Contrary to that, in the inset of Fig. 2�a�,
the result of single-dot detector is presented, of which the
visibility sensitively depends on the temperature. All these
features can be easily understood in terms of resonant tun-
neling through the double dots and single dot, respectively.

In addition to the visibility, the quality of a quantum de-
tector is well characterized by the signal-to-noise ratio, i.e.,
the peak-to-pedestal ratio of the output power spectrum. Not
as in Ref. 21, where the capacitively asymmetric coupling
model, i.e., with a=0 and b=1, was taken into account, be-
low we calculate the noise spectrum in general under arbi-
trary capacitive couplings. In particular, the symmetric cou-
pling, say, a=b=1/2, will be focused. Notably, from Fig.
3�a� we find that the peak-to-pedestal ratio is sensitively af-
fected by the tunnel rate �R of the right junction, where the
measured qubit is placed nearby. This feature is in qualitative
agreement with that found by Gilad and Gurvitz,21 although
a different definition of the signal-to-noise ratio was em-
ployed there.

In Fig. 3�b�, we show the effect of the capacitive coupling
symmetry. It is found that the signal-to-noise ratio will reach
the maximum at the symmetric coupling, i.e., when a=1/2.
This is because the charge-number fluctuation on the two
dots of the detector has negative contribution to the noise

FIG. 2. Tolerance of �not low-enough� finite temperatures of the

visibility, p= �I� / Ī=2�I� / �Ia+ Ib�, for different interdot couplings
of the DD detector: �a� �d /�=0.1 and �b� �d /�=1.6 and 6.4. As a
comparison, the result of single-dot SET is plotted in the inset of
�a�, where Ua is the Coulomb interaction between the qubit electron
in dot a and the transport electron in the central dot of SET. Results
are illustrated for three temperatures for the DD detector, T /�=0,
1.6, and 12.8 �corresponding to the solid, dot-dot-dashed, and dot-
ted lines�, while for five temperatures for the single-dot SET, T /�
=0, 0.4, 1.6, 6.4, and 12.8 �labeled by “1,” “2,”…, “5”�. For the DD
detector, the results are indistinguishable for small �d as shown in
�a�; the immunity against temperature will be weakened only for
large �d, as shown in �b�. In contrast, the visibility of the single-dot
SET is affected by temperatures much more sensitively. In the
whole calculations throughout the work, we assume that �L=�, and
use � as the energy unit. For the result shown in this figure, we
chose �R=�. Other parameters are adopted as Ec=Ed=0, Uac

=Ubc=Ubd=0, 
L=10�, and 
R=−10�.
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spectrum, thus largely suppresses the background noise. As a
consequence, the peak-to-pedestal ratio is enhanced for more
symmetric coupling and reaches the maximum at a=1/2. In
Fig. 3�b�, the solid �dashed� curve corresponds to the result
of the measured qubit next to the right �left� dot of the DD
detector. This remarkable difference reflects another interest-
ing symmetry effect of the setup configuration.

Note that �R and �d are two controllable parameters in
practice. We thus replot the signal-to-noise ratio versus the
scaled �R and Uad by �d in order to gain the entire landscape
more clearly, as shown in Fig. 4. In this context, we remark
that the peak-to-pedestal ratio of the DD detector can ap-
proach the upper limit of 4 of the ideal QPC detector,26 under
proper parametric conditions as indicated by Fig. 4. This
conclusion is in contrast with that by Gurvitz and
co-workers.6,21 There, it was concluded that both the single-
dot and double-dot detectors are only sensitive measurement
devices �i.e., with desirable visibility�, but cannot reach the
effectiveness of an ideal QPC detector. By tilting the tunnel
coupling such that �R��L, Gurvitz and co-workers found
that the signal-to-noise ratio can be considerably enhanced.
However, their calculation was restricted to the capacitively
asymmetric coupling model, i.e., with a=0 and b=1. In this
case, the upper limit of the signal-to-pedestal ratio is 2. Here,
as clearly shown by Fig. 3�b�, our calculation shows that
under the symmetric condition a=b=1/2 the signal-to-
pedestal ratio is maximal and can, in principle, approach the
value of 4, which is the upper limit of the ideal QPC
detector.26

As a brief summary, in the above we revealed three types
of configuration dependence: �i� left-versus-right location of

qubit with respect to the quantum dots of the DD detector,
�ii� relative coupling to the right electrode �i.e., �R depen-
dence�, and �iii� capacitive coupling. While �iii� was resolved
in terms of the role of the central charge-number fluctuations
in Eq. �4�, we would like to elaborate on �i� and �ii� further as
follows.

If the qubit is next to the right dot of the DD detector, the
interacting time is relatively shorter than the one when the
qubit locates nearby the left dot. As a result, smaller back-
action induced dephasing rate is anticipated from general
consideration, which in turn results in the larger signal-to-
noise ratio. Similar reasoning can partially apply to the �R
dependence in Fig. 3�a�. However, in addition to the inter-
acting time, the current through the detector, which influ-
ences the interacting strength, would also affect the back-
action dephasing. For the DD detector, the current difference
associated with different qubit states, which is nothing but
the signal, shows a turnover behavior with maximum at �R
=2�2�d. Explicit expression is referred to Eq. �4.4� in Ref.
27; see also Eq. �11� in the next section of the present work.
The dephasing rate shown in Fig. 5�a� largely follows the
behavior of the signal current. With both the dephasing rate
and the signal current in mind, the �R dependence in Fig.
3�a� can be accordingly understood. Note that the small
back-action dephasing tends to enhance the signal-to-noise
ratio, while in contrast the small signal current would reduce
it. The particular line shape of the signal-to-noise ratio versus
the �R is thus a result of these two competing effects, which
lead to its turnover behavior and the optimal �R differing
from the dephasing rate in Fig. 5�a�.

DEPHASING AND MEASUREMENT TIMES

In the orthodox Copenhagen postulate for quantum mea-
surement, the measured wave function collapses onto one of
the eigenstates of the observable instantaneously. In contrast
to that, the wave-function collapse in real device must need
some time, i.e., the measurement time. On the other hand,
during the collapsing process, dephasing between the super-
posed wave-function components must take place before

FIG. 3. Configuration symmetry dependence of the peak-to-
pedestal ratio of the output power spectrum: �a� �R dependence and
�b� capacitive coupling dependence. Note that in �b� the parameter a
characterizes the capacitive coupling symmetry �see the main text
for its more detailed explanation�. The major parameters are the
same as in Fig. 2, except for the differences as follows: In present
result, it is assumed that �=�d=0.2�, and the temperature T=0. In
�a�, we assume a symmetric configuration of capacitive coupling,
i.e., a=1/2, and assume the Coulomb interaction strengths as �1�
Uad /�=12, �2� Uad /�=6, �3� Uad /�=3, �4� Uad /�=2, and �5�
Uad /�=1. In �b�, in addition to the result depicted by the solid
curve, which corresponds to the suggested location of the qubit
nearby the right dot of the DD detector �as schematically shown in
Fig. 1�, we also plot the result by the dashed curve for the result of
configuration with the qubit nearby the left dot. For the former
configuration, Uac=0 and Uad=6�, while for the latter, Uad=0 and
Uac=6�. For both configurations, �R=2� is commonly used.

FIG. 4. Three-dimensional plot of the peak-to-pedestal ratio of
the output power spectrum as a function of �R and Uad. Relevant
parameters are the same as in Fig. 3�a�.
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reading out the result. Therefore, the ratio of the dephasing
time to the measurement time is another deep criterion to
characterize the efficiency of quantum measurement. In the
following, we carry out a quantitative analysis for the DD
detector.

The analysis is also based on the n-resolved master
equation. Since in this context we are interested in the
measurement-induced collapse of wave function, we con-
sider the measurement of the idle state of the qubit. We thus
set �=0, i.e., switch off the qubit state oscillation. Accord-
ingly, all the mixing terms, i.e., those proportional to �,
disappear in Eq. �2�. The density matrix of the system fac-
torizes into three independent groups. Furthermore, we re-
strict our analysis to zero temperature, and assume that Ei
=0 for i=a ,b ,c, and d and Uac=Ubc=Ubd=0. By Fourier
transforming the resultant n-resolved master equation, i.e.,
defining ��k , t�=�nR

��nR��t�einRk, we obtain

�̇aa
00 = − �L�aa

00 + �Reik�aa
22, �10a�

�̇aa
11 = − i�d��aa

21 − �aa
12	 + �L�aa

00, �10b�

�̇aa
22 = − i�d��aa

12 − �aa
21	 − �R�aa

22, �10c�

�̇aa
12 = iUad�aa

12 − i�d��aa
22 − �aa

11	 −
1

2
�R�aa

12, �10d�

�̇bb
00 = − �L�bb

00 + �Reik�bb
22, �10e�

�̇bb
11 = − i�d��bb

21 − �bb
12	 + �L�bb

00, �10f�

�̇bb
22 = − i�d��bb

12 − �bb
21	 − �R�bb

22, �10g�

�̇bb
12 = − i�d��bb

22 − �bb
11	 −

1

2
�R�bb

12, �10h�

�̇ab
00 = − �L�ab

00 + �Reik�ab
22, �10i�

�̇ab
11 = − i�d��ab

21 − �ab
12	 + �L�ab

00, �10j�

�̇ab
22 = − iUad�ab

22 − i�d��ab
12 − �ab

21	 − �R�ab
22, �10k�

�̇ab
12 = − i�d��ab

22 − �ab
11	 −

1

2
�R�ab

12, �10l�

�̇ab
21 = − iUad�ab

21 − i�d��ab
11 − �ab

22	 −
1

2
�R�ab

21. �10m�

We see that these equations split into three groups, i.e., Eqs.
�10a�–�10d�, Eqs. �10e�–�10h�, and Eqs. �10i�–�10m�. Here,
the density-matrix elements �mn

ij = �im���jn�. �i� and �j� denote
the occupation states of the DD detector, i.e., �0���00�, �1�
��10�, and �2���01�, respectively, while �m� and �n� denote
the qubit states �a� and �b�.

We now consider the characteristic solutions of the above
three groups of equations, i.e., solutions proportional to ei�t.
Technically, for each group of Eqs. �10�, we can obtain five
eigenvalues. For small values of k�1, from the former two
groups of Eqs. �10� we obtain the smallest two eigenvalues
� j�k�= �k+ 1

2 if jk2�� j, with j=a and b, respectively, which are
most relevant to present analysis. � j are the wave-packet
group velocities, which actually correspond to the stationary
currents Ij, with respect to the qubit in state �j�; f j are the
respective Fano factors. Explicitly, from Eqs. �10a�–�10h�, � j

and f j are obtained as

� j =
�d

2�R

��R
2

4
+ Uj

2� + �d
2�R� 1

�L
+

2

�R
� �

�d
2�R

Aj
, �11�

f j = 1 +
2�d

2

Aj
�2 −

�R
2 + �1 +

�R

�L
���R

2

4
+ Uj

2 + 4�d
2�

Aj
� .

�12�

Here, the Coulomb interaction energy Ua=Uad, and Ub=0,
with the convention that the two dot states of the DD detec-
tor are in resonance if the qubit is in state �b� and in off
resonance by an energy Ua=Uad if the qubit is in state �a�.
Quantitatively, the measurement time can be defined as the
required time for signal-to-noise ratio approaching unity.
This condition leads to3,4

tm = ��2fa�a + �2fb�b

�a − �b �2

. �13�

The dephasing time can be obtained by analyzing Eqs.
�10i�–�10m� for k=0. Similarly, solve the �five� eigenvalues
�i of these equations, then determine the dephasing time in
terms of td=max�Im �i	−1. More importantly, the quantum

FIG. 5. �R dependence �i.e., asymmetric effect� of �a� the
dephasing rate, �b� the measurement time, and �c� the quantum mea-
surement efficiency. Coulomb interaction strengths: �1� Uad /�=12,
�2� Uad /�=6, �3� Uad /�=3, and �4� Uad /�=1. Other relevant
parameters are the same as in Fig. 3�a�.
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measurement efficiency is obtained via �=1/ �2�dtm�, where
�d=1/ td.

In Fig. 5, we plot the �R dependence of the measurement
time, dephasing rate, and the quantum efficiency of measure-
ment. At the end of the previous section, we have explained
the �R dependence of the signal-to-noise ratio in terms of
dephasing rate and signal current, and pointed out that the
dephasing rate is roughly proportional to the signal current,
which is now depicted in Fig. 5�a�. From the general view-
point of quantum measurement, the measurement rate, i.e.,
the rate of information gain, should follow the back-action
dephasing rate. This is shown in Fig. 5�b�.

The quantum measurement efficiency, which is the ratio
of the dephasing time and the measurement time, is shown in
Fig. 5�c�. We notice that it does not well match the behavior
of the signal-to-noise ratio in Fig. 3�a�, although both have
maxima at proper �different� �R. This feature is not surpris-
ing, since the quantum measurement efficiency is anyhow an
alternative criterion to qualify the measurement process. That
is, it describes how fast the information is gained against the
back-action dephasing.28

Remarkably, in contrast with the usual statement that the
single electron transistor is not an ideal detector,1,3 it is found
here that the double-dot SET can approximately reach the
quantum limit of efficiency under appropriate parametric
conditions �see Fig. 5�c�	. However, these parametric condi-
tions do not simultaneously promise the maximal signal-to-
noise ratio. It is noticed that the comprehensive work by
Clerk et al. had focused on the measurement efficiency of
quantum scattering detectors.28,29 Using the scattering matrix
formalism, general conditions for quantum limited measure-
ments were carried out. Unfortunately, it is not convenient, if
not possible, to apply the scattering matrix formalism to the
SET-type detectors. Following the line of Clerk et al. espe-
cially using the concept of information gain and loss, further
elaboration on the quantum limit of efficiency found here is
interesting and an open question for future work.

CONCLUSION AND DISCUSSIONS

To summarize, we have presented a study for the quantum
measurement characteristics of double-dot SET. The study
was based on a full analysis of the setup configuration ge-
ometries, i.e., in terms of the tunneling strengths, capacitive
couplings, and the location of the qubit with respect to the
DD detector. We found that the DD detector can approach
the signal-to-noise ratio of an ideal QPC detector, provided
the symmetric capacitive coupling is taken into account. The
measurement time, the back-action dephasing time, and the

measurement efficiency were calculated. It was found that
the quantum limit of efficiency can be reached under proper
parametric conditions, although they differ from the ones for
obtaining the maximal signal-to-noise ratio.

Finally, we make a few remarks on issues relevant to the
present work. In Ref. 30, the measurement properties of the
superconducting SET �SSET� were analyzed, where both the
coherent Cooper-pair tunneling and the quasiparticle tunnel-
ing were taken into account to contribute the measurement
current. It was concluded that the Cooper-pair resonance pro-
cess allows for a much better measurement than a similar
nonsuperconducting SET, and can approach the quantum
limit of efficiency under proper parametric conditions. In our
opinion, the advantages of the SSET are largely a conse-
quence of the coherent tunneling of Cooper pairs, a unique
nature of superconductors.

About the nonsuperconducting SET, such as our semicon-
ductor DD detector, we do not expect that higher-order
tunnel processes can considerably influence or improve the
measurement efficiency. Higher-order �e.g., cotunneling�
contribution, which leads to small detection current, was cal-
culated in the Coulomb-blockade regime of SSET,31 and was
shown to have minor effect on the measurement effective-
ness, say, the signal-to-noise ratio.

It has come into our attention that the nonperturbative
treatment for strong qubit-detector coupling and arbitrarily
strong transmission detector has been recently an attractive
research subject.32,33 While in these studies the detector is a
QPC, similar analysis for SET-type detectors might be an
interesting subject of future work. However, typical experi-
ments such as those performed by Marcus and co-workers
did not imply strong couplings of the double quantum dots
�QDs� with the transport electrodes.34,35 In these experi-
ments, the charge configurations of coupled QDs were
probed by techniques such as the nearby QPC or direct trans-
port spectroscopy. In order to make the charge states of the
coupled QDs well defined, the couplings of the double QDs
with the external �transport� electrodes should be relatively
weak.
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